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Abstract

It is shown that Einstein–Weyl (EW) equations in 2+1 dimensions contain the dispersionless
Kadomtsev–Petviashvili (dKP) equation as a special case: if an EW structure admits a constant-
weighted vector then it is locally given byh = dy2 − 4 dx dt − 4udt2, ν = −4ux dt , whereu =
u(x, y, t) satisfies the dKP equation(ut − uux)x = uyy. Linearised solutions to the dKP equation
are shown to give rise to four-dimensional anti-self-dual conformal structures with symmetries. All
four-dimensional hyper-Kähler metrics in signature(+ + −−) for which the self-dual part of the
derivative of a Killing vector is null arise by this construction. Two new classes of examples of
EW metrics which depend on one arbitrary function of one variable are given, and characterised.
A Lax representation of the EW condition is found and used to show that all EW spaces arise
as symmetry reductions of hyper-Hermitian metrics in four dimensions. The EW equations are
reformulated in terms of a simple and closed two-form on theCP1-bundle over a Weyl space. It
is proved that complex solutions to the dKP equations, modulo a certain coordinate freedom, are
in a one-to-one correspondence with mini-twistor spaces (two-dimensional complex manifoldsZ
containing a rational curve with normal bundleO(2)) that admit a section ofκ−1/4, whereκ is
the canonical bundle ofZ. Real solutions are obtained if the mini-twistor space also admits an
anti-holomorphic involution with fixed points together with a rational curve and section ofκ−1/4

that are invariant under the involution. © 2001 Elsevier Science B.V. All rights reserved.
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1. Three-dimensional Einstein–Weyl spaces

The aim of this paper is to study the Einstein–Weyl (EW) equations in relation to integrable
systems, and in particular the dispersionless Kadomtsev–Petviashvili (dKP) equation. We
begin by collecting various definitions and formulae concerning three-dimensional EW
spaces (see [25] for a fuller account). In Section 2, we construct and characterise a class
of new EW structures in 2+1 dimensions out of solutions to the dKP equation. We then
show that the dKP solutions give rise to hyper-Kähler metrics in four dimensions. We abuse
terminology and call hyper-Kähler (hyper-complex, hyper-Hermitian) metrics which in
signature(++−−) should be referred to as pseudo-hyper-Kähler (pseudo-hyper-complex,
pseudo-hyper-Hermitian). A null vector field (with conformal weight) will play a central
role in our discussion so most of our constructions only make sense for EW spaces with
Lorentzian signature, or complex holomorphic EW spaces (i.e. the complexification of real
analytic EW spaces) and for the most part, we work with the latter and restrict to a real slice
when reality conditions play a role.

In Section 3, we construct some new examples of EW structures. We obtain all solutions
of the dKP equation with the property that the associated EW space admits a family of
divergence-free, shear-free geodesic congruences. These solutions give rise to new EW
metrics depending on one arbitrary function of one variable.

In Section 4, a Lax representation of the general EW equations is given, together with a
reformulation of the EW equations in terms of a closed and simple two-form on the bundle
of spinors. A full twistor characterisation of dKP EW structures and the corresponding
hyper-Kähler metrics will be given in Section 5. In Section 6, we summarise our present
knowledge of conformal reductions of four-dimensional hyper-Kähler metrics in split signa-
ture. In Appendix A, we show how to obtain the dKP equation as a reduction of Plebański’s
second heavenly equation [26].1

LetW be a three-dimensional complex manifold (one can also define Weyl spaces in
arbitrary dimension) with a torsion-free connectionD and a conformal metric [h]. We shall
callW a Weyl space if the null geodesics of [h] are also geodesics forD. This condition is
equivalent to

Dihjk = νihjk (1.1)

for some one-formν. Herehjk is a representative metric in the conformal class. The indices
i, j, k, . . . go from 1 to 3. If we change this representative byh → φ2h, then ν →
ν + 2 d lnφ. The one-formν ‘measures’ the difference betweenD and the Levi-Civita
connection∇ of h:

DiV
j = ∇iV j − 1

2(δ
j
i νk + δ

j
k νi − hikν

j )V k. (1.2)

The Ricci tensorWij and scalarW of D are related to the Ricci tensorRij and scalarR

1 Parts of this work appeared in the D.Phil. Thesis of one of the authors (MD) [5].
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of ∇ by

Wij = Rij + ∇iνj − 1
2∇j νi + 1

4νiνj + hij (−1
4νkν

k + 1
2∇kνk),

W := hijWij = R + 2∇kνk − 1
2ν
kνk.

A tensor objectT which transforms asT → φmT whenhij → φ2hij is said to be confor-
mally invariant of weightm. The Ricci scalarW , and the Ricci tensorWij have weights−2
and 0, respectively.

Let β be ap-form of weightm. The covariant exterior derivative

D̃β := dβ − 1
2mν ∧ β

is a well-defined (p+1)-form of weightm. The formula for a covariant weighted derivative
of a vector of weightm is

D̃iV
j = ∇iV j − 1

2δ
j
i νkV

k − 1
2(m+ 1)νiV

j + 1
2ν
jVi. (1.3)

We say that a vectorK is a symmetry of a Weyl structure if it preserves the conformal
structure [h], the Weyl connection, and the compatibility (1.1) between these two. These
conditions imply

LKh = ψh, LKν = dψ, (1.4)

where(h, ν) is a Weyl structure, andLK is the Lie derivative alongK.
The conformally invariant EW condition on(W, h, ν) is

W(ij) = 1
3Whij .

If the above equation is satisfied andν is a gradient, thenh is conformal to a metric with
constant curvature.

In terms of the Riemannian data, the EW equations are

χij := Rij + 1
2∇(iνj) + 1

4νiνj − 1
3(R + 1

2∇kνk + 1
4ν
kνk)hij = 0. (1.5)

Hereχij is a conformally invariant tensor (the trace-free part of the Ricci tensor of the Weyl
connection). Weyl spaces which satisfy (1.5) will be called EW spaces.

In three dimensions, the general solution of (1.1)–(1.5) depends on four arbitrary functions
of two variables [4]. The equations of the Weyl geodesics are

d

ds

∂L

∂ẋi
− ∂L

∂xi
= Fi(x

j , ẋj ),

whereL = 1
2hij ẋ

i ẋj andFi = ẋi (ẋ
j νj ) − 1

2νi(ẋ
j ẋj ). Here overdot stands for d/ds, the

derivative with respect to a parameters. It is evident that for null̇xi , the geodesics coincide
with the null geodesics for [h].
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2. EW structures from the dKP equation

In this section, we shall construct EW structures out of solutions to the dKP equation. In
Section 2.1, we shall find a class of hyper-Kähler metrics in four dimensions which reduce
to dKP EW metrics.

The full Kadomtsev–Petviashvili equation forU := U(Xi),Xi = (X, Y, T )

(UT − UUX − 1
12UXXX)X = UYY (2.6)

arises as a compatibility condition for the linear systemL0Ψ = L1Ψ = 0, whereΨ =
Ψ (X, Y, T ) and

L0 = ∂Y − 1
2∂

2
X − U, L1 = ∂T − 1

3∂
3
X − U∂X −W

for someW = W(X, Y, T ). To take a dispersionless limit of (2.6) [11], we introduce the
slow coordinatesxi := εXi (note that our notation for ‘slow’ and ‘fast’ coordinates is
different from the usual one), and defineu(xi) := U(Xi), w(xi) := W(Xi). The linear
system is replaced by

Sy = 1
2S

2
x + u, St = 1

3S
3
x + uSx + w. (2.7)

HereS := S(xi) is the action defined byΨ (Xi) = exp [ε−1S(xi)], and higher order terms in
ε have been neglected. Formulae (2.7) can be treated as a pair of Hamilton–Jacobi equations
StA +HA(Sx, x, tA) = 0, with tA = (y, t) andHA = (H2, H3), where

H2 := 1
2λ̃

2 + u, H3 := 1
3λ̃

3 + λ̃u+ w

for u = u(x, y, t) andw = w(x, y, t). Now xi and∂S/∂xi = (λ̃, H2, H3) form a set of
canonically conjugate variables on an ‘extended phase-space’, with the symplectic form

Π = dxi ∧ d
∂S

∂xi
= dx ∧ dλ̃+ dy ∧ dH2 + dt ∧ dH3. (2.8)

This two-form is closed by definition. It is also simple iffu andw satisfy

wx = uy, ut − uux = wy.

Eliminatingw yields the dKP equation

(ut − uux)x = uyy. (2.9)

The simplicity ofΠ implies [∂y+XH2, ∂t+XH3] = 0, whereXH := Hx∂λ̃−Hλ̃∂x denotes
the Hamiltonian vector field with respect to dλ̃∧ dx, holdingt andy constant. This gives a
Lax pair for the dKP equation in terms of Hamiltonian vector fields. To obtain a Lax pair,
which is linear in the spectral parameter, put

L0′ := ∂t +XH3 − λ̃(∂y +XH2) = ∂t − u∂x − λ̃∂y + uy∂λ̃,

L1′ := ∂y +XH2 = ∂y − λ̃∂x + ux∂λ̃. (2.10)
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The dKP equation is equivalent to

[L0′ , L1′ ] = −uxL1′ .

Define a triad of vectors

∇1′1′ := ∂x, ∇0′1′ := ∂y, ∇0′0′ := ∂t − u∂x

soLA′ = πB
′∇A′B ′ + fA′∂λ̃, whereπA

′ = (1,−λ̃) andfA′ = (uy, ux).
We can find a one-formν such that∇A′B ′ is a null triad for an EW metric, as given by

the following preposition.

Proposition 2.1. Let u := u(x, y, t) be a solution of the dKP equation(2.9). Then the
metric and the one-form

h = dy2 − 4 dx dt − 4udt2, ν = −4ux dt (2.11)

give an EW structure.

Proof. Let x1 := t, x2 := y, x3 := x. Five (out of six) EW equationsχij = 0 are satisfied
identically by ansatz (2.11). The equationχ11 = 0 is equivalent to (2.9). We also find
W = −3uxx. �

Example. Solutions which yield EW structures conformal to Einstein metrics (i.e. those
for whichν is exact) are of the form

u(x, y, t) = x f1(t)+ 1

2

(
df1(t)

dt
− f1(t)

2
)
y2 + f2(t)y + f3(t), (2.12)

wheref1(t), f2(t), f3(t) are arbitrary functions of one variable.

One can verify that the vector∂x in the EW space (2.11) is a covariantly constant null
vector in the Weyl connection with weight−1

2. Now, we shall prove the converse, and show
that solutions (2.11) are characterised by the existence of a constant-weighted vector.

Proposition 2.2. If a three-dimensional EW space has a constant-weighted vector fieldl

then coordinates can be chosen to put the EW metric and one-form in the form(2.11).

We shall need the following lemma.

Lemma 2.3. Let l be a constant-weighted vector on a three-dimensional EW space. Then
either the EW space is flat orl is null (so on a real slice, the signature is(+ − −)) and has
weight−1

2.

Proof. Assume that(h, ν) is a complex EW structure (we shall specify the reality conditions
later in the proof). Commuting the Weyl derivatives yields

[Di,Dj ]l
k = 1

2m(Diνj −Djνi)l
k = Wk

mijl
m,
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whereWk
mij is the curvature of the Weyl connection, andm is the weight oflk. It can be

decomposed as

Wk
mij = −εpij εkq

m Spq − δkmFij , (2.13)

whereFij = ∇[iνj ] , andSij is a conformally invariant tensor of weight 0. If the EW equa-
tions are satisfied,Sij is given by

Sij = 1
2Fij + 1

6Whij . (2.14)

Eqs. (2.13) and (2.14) imply

(m+ 1)Fij l
k = −1

2ε
p
ij l
mε

kq
m Fpq + 1

6W(δ
k
i lj − δkj li). (2.15)

In three dimensions, any non-zero two-formFij has a non-trivial kernel, i.e. there exists a
non-zero vectorLj with FijL

j = 0, which implies

Fij = FεijkL
k (2.16)

for some non-zeroF . We have to consider three cases:
• Suppose first thatLk is a null vector and contract (2.15) withLj to find

0 = −1
2ε
p
ij ε

kq
m FεpqrL

rlmLj + 1
6W(δ

k
i ljL

j − Lkli). (2.17)

Contracting this withLk yieldsWljLj = 0. If W = 0, then (2.17) implies thatli andLi

are proportional, soli is null. If W 6= 0, so thatljLj = 0 then (2.17) reduces to

0 = 1
2FLq lmLiε

k
mq

− 1
6WliL

k

from which againli is null. Therefore,li andLi are both null and orthogonal and so (as
we work in three dimensions) they have to be proportional. Now (2.17) forcesW = 0.
Eq. (2.15) is now satisfied only ifm = −1

2.
• If Li is not null, we can choose an orthogonal frame withF23 = F 6= 0, andF12 =
F13 = 0, and use (2.15) to examine components ofFij l

k in this frame. This yields

Wl1 = 0, Fl1 = 0, 1
2Fl3 + 1

6Wl2 = 0, 1
2FV2 − 1

6Wl3 = 0, (2.18)

(m+1)Fl1 = 0, (m+1)Fl2 = 1
6Wl3 = 1

2Fl2, (m+1)Fl3 = −1
6Wl2 = 1

2Fl3.

Therefore,l1 = 0, and (2.18) imply(m + 1
2)Fl2 = 0, (m + 1

2)Fl3 = 0. But li 6= 0,
som = −1

2. Eqs. (2.18) also imply thatli is null.
• If F = 0 = dν = 0 (Einstein case), choose a conformal gauge in whichν = 0. Now
Dil

j = ∇i lj = 0 impliesR = 0. Therefore, the metrich is flat andlj is a constant
vector. �

Proof of Proposition 2.2. Lemma 2.3 and the formula (1.3) withm = −1
2 imply

D̃i l
j = Dil

j + 1
4νi l

j = 0. (2.19)

Therefore,Dilj = 3
4νi lj , so dl = 3

4ν ∧ l (herel is the one-form dual tol).
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This implies that we can rescale the metric and hencel so thatl = −2 dt for some
function t . We must then haveν = b dt for some functionb. Choose coordinatesx andy
so thatl(y) = 0 andl(x) = 1 and(x, y, t) is a coordinate system. At this point, we have

h = F dy2 +Gdy dt − 4 dx dt − 4udt2, ν = b dt,

whereF,G, b andu are functions ofx, y, t . The formulae (1.2) and (2.19) imply∇i lj =
1
4νi lj − 1

2νj li . Symmetrising this expression yields∇(i lj) = −1
4νi lj , which implies that

Fx = Gx = 0, and 4ux = −b. We are still free to changex → x + P(y, t), which gives

h = F dy2 +Gdy dt − 4(dx + Py dy + Pt dt)dt − 4udt2, ν = −4ux dt.

We can findK such that d̂y := √
F dy + K dt is exact, and eliminate the dŷ dt term in

the metric by choosing 4Py = −2K + G/
√
F . This (after redefiningu by adding to it a

function of(ŷ, t) so thatν remains unchanged) yields the EW structure (2.11).

Remark. The above coordinate conditions fix the coordinates andu only up to the freedom
(x, y, t) 7→ (x̃, ỹ, t̃ ), u(x, y, t) 7→ ũ(x̃, ỹ, t̃ ), where

(x, y, t) = (x̃ − f ′ỹ − g, ỹ − 2f, t̃),

ũ(x̃, ỹ, t̃ ) = u(x̃ − f ′ỹ − g, ỹ − 2f, t̃)− ỹf ′′ − f ′2 − g′, (2.20)

wheref andg are arbitrary functions oft and prime denotes the derivative with respect tot .

Furthermore, the conformal scale is only fixed up to arbitrary functions oft , h 7→ h̃ =
Ω2h. Such a rescaling leads to a redefinition oft , t 7→ t̃ given byt = c(t̃), whereΩ =
c′−2/3, where now and in the following, prime denotes the derivative with respect tot̃ .
This leads to the redefinitions(x, y, t) → (x̃, ỹ, t̃ ), u(x, y, t) → ũ(x̃, ỹ, t̃ ) given by

(x, y, t) =
(
c′1/3x̃ + c′′

6c′2/3
ỹ2, c′2/3ỹ, c(t̃)

)
,

ũ(x̃, ỹ, t̃ ) = c′2/3u
(
c′1/3x̃ + c′′

6c′2/3
ỹ2, c′2/3ỹ, c

)
+ c

′′x̃
3c′

+ ỹ
2

18

(
3c′′′

c′
− 4

(
c′′

c′

)2
)
.

(2.21)

From the point of view of the EW spaces, the transformations above are equivalences;
however, from the point of view of the dKP equations, they map one solution of the dKP
equations to another allowing one to deduce solutions depending on three functions of one
variable from a given solution.

Corollary 2.4. Letu(x, y, t) be a solution to the dKP equation, thenũ(x̃, ỹ, t̃ ) is another
solution, whereũ is given in terms of either of the formulae(2.21)or (2.20).
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2.1. Hyper-Kähler structures from the dKP equation

In this section, we shall show that EW structures given by (2.11) give rise to four-dimen-
sional hyper-Kähler structures with symmetry. We shall start by summarising some results
about anti-self-dual (ASD) four manifolds with Killing vectors, and the Lax representation
of hyper-Hermitian four manifolds.

All three-dimensional EW spaces can be obtained as spaces of trajectories of conformal
Killing vectors in four-dimensional manifolds with ASD conformal curvature.

Proposition 2.5 (Jones and Tod [16]).Let (M, ĝ) be an ASD four-manifold with a con-
formal Killing vectorK. The EW structure on the spaceW of trajectories ofK (which is
assumed to be non-pathological) is defined by

h := |K|−2ĝ − |K|−4K � K , ν := s∗(2|K|−2 ∗ĝ (K ∧ dK )), (2.22)

where|K|2 := ĝabK
aKb, K is the one-form dual to K and∗ĝ is taken with respect tôg

ands :W 7→M is an arbitrary section of the fibrationM 7→W. All EW structures arise
in this way.

Conversely, let(h, ν) be a three-dimensional EW structure onW, and let(V , α) be a pair
consisting of a function of weight−1 and a one-form onW which satisfy the generalised
monopole equation

∗h(dV + 1
2νV ) = dα, (2.23)

where∗h is taken with respect toh. Then

g = Vh± V −1(dz+ α)2 (2.24)

is an ASD metric with an isometryK = ∂z. The negative sign in(2.24) is chosen ifh has
signature(+ + −).

In what follows, we shall consider ASD structures which are also (complexified) hyper-
Hermitian.

A smooth manifoldM equipped with three almost complex structures(I, J,K) satis-
fying the algebra of quaternions is called hyper-complex iff the almost complex structure
Jλ = aI + bJ+ cK is integrable for any(a, b, c) ∈ S2. We useλ = (a + ib)/(c − 1), a
stereographic coordinate onS2 which we view as a complex projective lineCP1. Let g be
a Riemannian metric onM. If (M,Jλ) is hyper-complex andg(JλX,JλY ) = g(X, Y )

for all vectorsX, Y onM then the triple(M,Jλ, g) is called a hyper-Hermitian structure.
We shall restrict ourselves to oriented four-manifolds. In four dimensions, a hyper-

complex structure defines a conformal structure, which in explicit terms is represented
by a conformal orthonormal frame of vector fields(X, IX, JX,KX), for anyX ∈ TM. It is
well known [1] that this conformal structure is ASD with the orientation determined by the
complex structures.
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If there exists a choice of a conformal factor such that a two-formΣλ defined by
Σλ(X, Y ) := g(X,JλY ) is closed (with fixedλ) for all λ ∈ CP1 and all vectors(X, Y )
then(M,Jλ, g) is called hyper-Kähler.

We will, in practice, be interested in complexified or indefinite hyper-Hermitian metrics
with signature(+ + −−) for which the tensors(I, J,K) must necessarily be complex.
Taking the(+ + −−) real sections is accomplished by the reduction of the structure group
form Sp(4,C) to Sp(4,R). In signature(+ + −−) we can arrange for one of the complex
structures to be real and for the other two to be pure imaginary. SettingJ := iS, T := iK
yields

−I2 = S2 = T 2 = 1, IST= 1,

andS andT determine a pair of transverse null foliations. Note thatg(TX,TY) = g(SX,SY)
= −g(X, Y ) for any pair of real vectorsX, Y . The endomorphismI endowsM with the
structure of a two-dimensional complex Kähler manifold, as does every other complex
structureaI + bS+ cT parametrised by the points of the hyperboloida2 − b2 − c2 = 1.

We shall use the following characterisation of the hyper-Hermiticity condition.

Proposition 2.6(Dunajski [6] and Mason and Newman [21]).Let∇AA′ be four independent
real vector fields on a four-dimensional real manifoldM, and let

L0 = ∇00′ − λ∇01′ , L1 = ∇10′ − λ∇11′ , where λ ∈ CP1.

If

[L0, L1] = 0 (2.25)

for everyλ, then∇AA′ is a null tetrad for a(+ + −−) hyper-Hermitian metric onM.
Every(+ + −−) hyper-Hermitian metric arises in this way. Moreover, if the vectors∇AA′

preserve a volume formvolg onM, then f−1∇AA′ is a null tetrad for a(+ + −−)
hyper-Kähler metric onM. Here, f 2 = volg(∇00′ ,∇10′ ,∇01′ ,∇11′).
Now we shall use (2.11) and Proposition 2.5 to construct ASD metrics out of solutions to
the dKP equation, and Proposition 2.6 to show that they are hyper-Kähler.

Assume thath andν are as in (2.11). Taking the exterior derivative of the generalised
monopole equation (2.23) yields

0 = ∇i∇iV + 1
2(∇iνi)V + 1

2ν
i∇iV = Vyy − Vxt + uVxx + 2uxVx + uxxV (2.26)

which is just a linearisation of the dKP equation (2.9) (note that foru = 0, (2.26) is just
the wave equation relative to the flat metric dy2 − 4 dx dt). One solution isV = 1

2ux . One
could find a correspondingα and write down a metric using formula (2.24) (see the remarks
after Proposition 2.7), but we shall present a different method based on the Lax operators.

Take the Lax operators (2.10) and introduce a new spectral parameterλ := λ̃ − z for
somez. The functionu(x, y, t) does not depend onz so we can replace∂λ̃ by ∂z. This yields
(with dropped primes and added tildes)

L̃0 = ∂t − u∂x − z∂y + uy∂z − λ∂y, L̃1 = ∂y − z∂x + ux∂z − λ∂x.
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To obtain a pair of exactly commuting operators take

L1 := L̃1 = ∂y − z∂x + ux∂z − λ∂x,

L0 := L̃0 + zL̃1 = ∂t − (u+ z2)∂x + (uy + uxz)∂z − λ(∂y + z∂x).

If u(x, y, t) is a solution to (2.9), then these operators satisfy [L0, L1] = 0 and so, by
Proposition 2.6, the vectors

∇10′ = ∂y − z∂x + ux∂z, ∇11′ = ∂x,

∇00′ = ∂t − (u+ z2)∂x + (uy + uxz)∂z, ∇01′ = (∂y + z∂x),

form a hyper-Hermitian frame. The vectors∇AA′ preserve the volume form volg = dt ∧
dy ∧ dx ∧ dz, andf 2 = 1

2ux . Therefore, we have the following.

Proposition 2.7. Letu = u(x, y, t). The metric

g = ux

2
(dy2 − 4 dx dt − 4udt2)− 2

ux

(
dz− ux dy

2
− uy dt

)2

(2.27)

is (pseudo) hyper-Kähler.

Remarks.
• The above metric has a Killing vector∂z with the dual

K = − 2

ux

(
dz− ux dy

2
− uy dt

)
,

and the formulae(2.22)give rise to the EW structure(2.11).The self-dual part ofdK is
a simple two-form. In Section5, we shall show that all hyper-Kähler metrics with such
symmetries are locally given by(2.27).

• Note thatux 6= 0 for (2.27) to be well defined. To obtain a flat metric, takeu = −x/t
which is a special case of(2.12).The metric(2.27)becomes

g = 2 dx
dt

t
− 2x

dt2

t2
+ 2t dz2 + 2 dz dy.

Puttingx = Xt + z2t/2, y = Y − zt yields the flat metric

g = 2 dX dt + 2 dz dY.

• The metric(2.27)could be found directly from the monopole equation(2.23)as follows:
rewrite the metric(2.11)in an orthonormal triadh = e2

1 + e2
2 − e2

3, where

e1 = dy, e2 = dx + (u− 1)dt, e3 = dx + (u+ 1)dt.

The duality relations∗he1 = e3 ∧ e2, ∗he2 = e1 ∧ e3, ∗he3 = e1 ∧ e2 yield

∗hdt = dt ∧ dy, ∗hdy = 2 dt ∧ dx, ∗hdx = dy ∧ dx + 2udy ∧ dt.

(2.28)
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TakeV = 1
2ux , and use the above relations to write the monopole equation(2.23)as

1
2uxx dy ∧ dx + uxy dt ∧ dx + (u2

x + uuxx − 1
2uxt)dy ∧ dt = dα.

Choosing the gauge in whichα = α1 dy + α2 dt (this is always possible by redefining a
coordinatez along the orbits of a Killing vector) gives

(α1)x = −1
2uxx, (α2)x = −uxy, (α2)y − (α1)t = 1

2uxt − uyy. (2.29)

All solutions to this system of equations are gauge equivalent to

α = −1
2ux dy − uy dt.

SubstitutingV, α andh to (2.24)yields(2.27).
• The Lax pair(2.10)can be obtained from the hyper-Kähler Lax pair by a symmetry re-

duction: the distribution(K, L̃0, L̃1) is not integrable, as[K, L̃0] = −∂y and[K, L̃1] =
−∂x . To obtain an integrable distribution, one needs to liftK to the correspondence space
by K̃ = K − ∂λ. Then(K̃, L̃0, L̃1) is an integrable distribution, but K̃(λ) 6= 0, which
forces us to introduce an invariant spectral parameterλ̃ = λ+ z. This implies that in the
Lax pair, we replace all∂z by K̃ + ∂λ̃. Now we restrict ourselves to invariant solutions
to L̃0Ψ = L̃1Ψ = 0, and so we ignoreK̃ in the Lax pair. The reduced Lax pair is given
by (2.10).

In the covariantly constant primed spin frame, the null tetrad is

e00′ = −ux dt, e10′ = dz− uy dt

ux
, e01′ = dz− ux dy − (uy + zux)dt,

e11′ = dx + udt + z
dz− uy dt

ux
,

and the metric(2.27) is 2(e00′
e11′ − e01′

e10′
). The basis of SD two-form is in this frame

given by

Σ0′0′ = dz ∧ dt, Σ0′1′ = dz ∧ dy + d(u+ z2) ∧ dt,

Σ1′1′ = uxdx ∧ dy − uuxdy ∧ dt + uydx ∧ dt

+d(uz) ∧ dt + dz ∧ (dx + zdy + z2 dt).

They satisfy

−2Σ0′0′ ∧Σ1′1′ = Σ0′1′ ∧Σ0′1′
, dΣ0′0′ = dΣ0′1′ = dΣ1′1′ = 0,

which again implies that the metric(2.27) is hyper-Kähler. Note that the Killing vector
K = ∂z does not preserve the Kähler formΣ0′1′

.
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3. Examples

3.1. dKP EW spaces withS1 symmetry

In this section, we shall construct EW structures depending on one arbitrary function of
one variable.

To find some explicit examples of (2.11), assume thatu is independent ofy. Therefore, it
satisfies the simple equationuux = ut , all solutions of which are given in an implicit form

u(x, t) = f (x + tu(x, t))

(more general hodograph transformations for dKP arising from its connection with equations
of hydrodynamic type were studied in [12,17]). Heref is an arbitrary function of one
variables := x + tu(x, t). The idea is to write the EW structure (2.11) making use of the
‘hodograph transformation’. We have

h = dy2 − 4 dt (dx + udt) = dy2 − 4 dt (ds − t du) = dy2 − 4 dt ds + 4t dt df (s),

where we performed a coordinate transformation(x, y, t) → (s, y, t). DefiningF(s) :=
df/ds and replacingux by F/(1 − tF) yields the EW structure

h = dy2 + 4(tF(s)− 1)dt ds, ν = 4
F(s)

tF(s)− 1
dt (3.30)

which depends on one arbitrary functionF(s) (which we shall take to be strictly negative)
of one variable. This structure has signature(+ + −). If t > 0, then it is well-defined on
S1 × R+ × R.

We shall now show that formulae (3.30) give a class of EW structures on principalS1

bundles over Weyl manifolds.

Proposition 3.1. Let (N , [H ], νH ) be a two-dimensional manifold with a Weyl structure
of signature(+−) and letπ :W → N be anS1 bundle overN . If

h := dy2 + π∗H, ν := π∗νH

(wherey is a coordinate on a fibre) is an EW structure onW, then it can be put in the form
(3.30).

Proof. We can use isothermal coordinates(s̃, t) onN and choose a representative of a
conformal class [H ] such thath andν are

h = dy2 + 2G(s̃, t)ds̃ dt, ν = K(s̃, t)dt. (3.31)

Each EW structure of this form is equivalent to (3.30). This can be seen as follows: equations
χ13 = 0, χ22 = 0 imply thatK = 4Gt/G + f (t). The functionf (t) can be absorbed in
the definition ofG. Then the vanishing ofχ33 (all remaining EW equations are satisfied
trivially) yields G(s̃, t) = −2F1(s̃) + 2tF2(s̃) for arbitraryF1 andF2. Now we define
a new coordinates by ds := F1(s̃)ds̃. Equivalence between (3.30) and (3.31) is finally
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obtained by puttingF(s) := F2(s)/F1(s). The metric (3.30) is not Einstein asG22 6= 0,
G13 6= 0 andR = −2Fs/(tF − 1)3 is not constant (unlessF is constant). To visualise
the two-dimensional surfaceN on whichH is defined, one can restrict a flat(+ + −−)
metric onR4, g = df dw − ds dt to the intersection of the paraboloidw = 1

2t
2 with the

hyper-surfacef = f (s). �

The hyper-Kähler metric corresponding to (3.30) has an additional null Killing vector∂y

and is (with definitions dw := −F ds, F̂ (w) := F−1) given by

g = dw dt + dz dy + (t − F̂ (w))dz2,

whereF̂ (w) is arbitrary.
Other examples (without a Killing vector) can be obtained from

u = t
dA(t)

dt
− x

t
+ y

t

(x
t

+ A(t)
)1/2

,

whereA(t) is arbitrary.

3.2. dKP metrics which are hyper-CR

Let us recall that an EW metric is called hyper-CR (or special) if it admits a two-parameter
family of shear-free, divergence-free geodesic congruences [3]. All hyper-CR EW spaces
arise as reductions of hyper-Kähler metrics by tri-holomorphic homotheties [9]. In this
section, we shall find all EW metrics in 2+1 dimensions which are both dKP and hyper-CR.
This will lead to a class of solutions to the dKP equation depending on one arbitrary function
of one variable.

Proposition 3.2. All EW metrics which admit a constant-weighted vector and a two-
parameter family of shear-free geodesic congruences with a vanishing divergence are either
spaces of constant curvature or are locally of the form

h = dy2 − 4 dx dt − 4

(
P(t)

y
− x2

y2

)
dt2, ν = 8x

y2
dt, (3.32)

whereP is an arbitrary function oft .

Proof. The hyper-CR condition for a metric is characterised [9] by the existence of a scalar
ρ of weight−1 which (together with the EW one-formν) satisfies the monopole equation

∗h(dρ + 1
2νρ) = dν, (3.33)

and the algebraic constraint

ρ2 = 8
3W. (3.34)

We shall impose these conditions on the dKP metric (2.11). The monopole equation yields

(4uxx − 2ρy)dx ∧ dt + ρx dy ∧ dx + (2ρxu− ρt + 2ρux + 4uxy)dy ∧ dt = 0
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which (together with (3.34)) gives four scalar equations:

ρy = 2uxx, ρx = 0, 2ρux − ρt + 4uxy = 0, ρ2 = −8uxx. (3.35)

If uxx = 0, then the last relation in (3.35) givesρ = 0. The monopole equation then
implies thatν is closed, and the EW metric is conformal to Einstein. Therefore, we assume
uxx 6= 0. Differentiating the third equation in (3.35) with respect tox (and using the first
two equations) gives

ρ = −2
uxxy

uxx
.

The integrability conditions to (the otherwise over-determined system) (3.35) are

uxxx = 0, u2
xxy − uxxyyuxx = u3

xx, 4uxxy = ηu3
xx,

uxxyuxxt − uxxytuxx + 2uxuxxuxxy − 2uxyu
2
xx = 0. (3.36)

The first condition impliesu(x, y, t) = ax2 + bx+ c. Here,a, b, c are functions ofy and
t , which satisfy

ayy + 6a2 = 0, (3.37)

byy − 2at + 6ab = 0, (3.38)

cyy − bt + 2ac+ b2 = 0, (3.39)

a2
y − aayy − 2a3 = 0, (3.40)

a2
y + 4a3 = 0, (3.41)

aayt − ayat − 2aayb + 2bya
2 = 0. (3.42)

Eqs. (3.37)–(3.39) follow from the dKP (2.9), and the other equations are the integrability
conditions (3.36). Solve (3.41) to finda(y, t) = −(y − L(t))−2 (or a = 0 which gives
uxx = 0).

We can now perform the coordinate transformation (2.20) withf = −1
2L andg = 0 to

setL(t) = 0. One verifies that (3.37), and (3.41) are also satisfied now. Eq. (3.38) gives
b(y, t) = −M(t)y−2 +N(t)y3, but (3.42) impliesN(t) = 0. So far, we have

h = dy2 − 4 dx dt + 4

(
c(y, t)− xM(t)

y2
− x2

y2

)
dt2, ν = 8x + 4M(t)

y2
dt.

The functionM(t) can be eliminated by the coordinate transformation (2.20) withg = 1
2M.

Imposing (3.39) yieldsc(y, t) = P(t)/y + R(t)y2 leaving

h = dy2 − 4 dx dt + 4

(
−x

2

y2
+ P(t)

y
+ R(t)y2

)
dt2, ν = 8x

y2
dt.
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We eliminateR(t) by performing the conformal rescaling and associated coordinate
redefinitions of (2.21) withc(t̃) satisfying

R = − c′′′

6c′3
+ 1

4

(
c′′

c′2

)2

.

This yields, dropping the tildes and with a redefinition ofP ,

u(x, y, t) = −x
2

y2
+ P(t)

y
.

The EW structure is therefore (3.32). The arbitrary functionP(t) cannot be eliminated.
This can be seen by finding the symmetries (1.4) of the EW structure (3.32). We summarise
our findings in the table below:

FunctionP(t) Symmetries

(i) P(t) = 0 K1,K2,K3,K4

(ii) P(t) = const. 6= 0 K1,K2 + 3K3,K4

(iii) P(t) = (bt + c)(3a−b)/2b cK1 + aK2 + bK3

(iv) GeneralP(t) None

wherea, b, c are constants, and

K1 = ∂t , K2 = 1
2y∂y + x∂x, K3 = 1

2y∂y + t∂t ,

K4 = ty∂y + (y2 + 2xt)∂x + 3t2∂t .

Note that in case (ii), we can redefine coordinates to setP(t) = 1. The vector fields
K1,K2 + 3K3,K4 generate the Lie group of Bianchi type VIII, i.e.SU(1,1), and the
cases (i) and (ii) give homogeneous EW spaces. Case (iii) can be reduced toP(t) = tα,

K = K3 + [ 1
3(2α + 1)]K2, whereα = const. 6= 0. �

4. The twistor correspondences and Lax formulations

In this section, we shall study the twistor theory of the EW spaces. We first discuss
the twistor correspondence in the flat case. We then give a Lax formulation of the EW
equations and derive from it the twistor correspondence. We study this correspondence in
relation to reductions of the ASD equations on four-dimensional conformal structures. We
then reformulate the EW equations in terms of a certain two-form on the trivialCP

1 bundle
over a Weyl space.

4.1. The flat correspondence

Let us begin by recalling Ward’s approach [31] to twistors in (2+1)-dimensional flat
space–times. Rearranging the space–time coordinates(x, y, t) as a symmetric two-
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spinor2

xA
′B ′

:=
(
t 1

2y

1
2y x

)
,

such that the space–time metric and the volume form are

h = −2 dxA′B ′ dxA
′B ′
, volh = dxB

′
A′ ∧ dxA

′
C′ ∧ dxC

′
B ′ .

The two-dimensional spinor indices are raised and lowered with the symplectic formεA′B ′ ,
such thatε0′1′ = 1 (see [24] for a full account of the two-spinor formalism). We shall
use the abstract index conventionV i = V (A

′B ′) = v(A
′
πB

′) based on an isomorphism
T iW = S(A

′ ⊗ SB
′).

The projective mini-twistor space ofR2+1 is the two-dimensional complex manifold
Z = TCP1 which is the total space of the line bundleO(2) of Chern class 2 overCP1.
Points ofZ correspond to null 2-planes inR2+1 via the incidence relation

xA
′B ′
πA′πB ′ = ω. (4.43)

Here(ω, π0′ , π1′) are homogeneous coordinates onO(2): (ω, πA′) ∼ (ρ2ω, ρπA′), where
ρ ∈ C∗. In the affine coordinates̃λ := π0′/π1′ , ξ := ω/(π1′)2, Eq. (4.43) isξ = x + λ̃y +
λ̃2t . First fix (ω, πA′). If (ξ, λ̃) are both real, then (4.43) defines a null plane inR2+1. If
bothξ andλ̃ are complex, then the solution to (4.43) is a time-like curve inR2+1. We shall
say that this curve is oriented to the future if Imλ̃ > 0 and to the past, otherwise. Ifλ̃ is
real andξ is complex, then (4.43) has no solutions for finitexA

′B ′
.

An alternate interpretation of (4.43) is to fixxA
′B ′

. This determinesω as a function ofπA′ ,
i.e. a section ofO(2) → CP

1 when factored out by the relation(ω, πA′) ∼ (ρ2ω, ρπA′).
These are embedded rational curves with normal bundleO(2). Two rational curveslp1 and
lp2 (corresponding to(t1, y1, x1) and(t2, y2, x2), respectively) intersect at two points

λ1,2 = 2R2 ∓ √
h(R,R)

2R1
, where Ri := (t1 − t2, y1 − y2, x1 − x2).

Therefore the incidence of curves inZ encodes the causal structure ofR2+1 in the following
sense:lp1 and lp2 intersect at (a) one point, (b) two real points, (c) two complex points
conjugates of each other, iffp1, p2 are (a) null separated, (b) space-like separated, (c)
time-like separated.

Examining the relevant cohomology groups shows that the moduli space of curves with
normal bundleO(2) in Z is C3. The real space–timeR2+1 arises as the moduli space of
curves that are invariant under the conjugation(ω, πA′) 7→ (ω̄, π̄A′).

The correspondence spaceF = C3×CP1 = {(p, Z) ∈ C3×Z|Z ∈ lp}. By definition, it
inherits fibrations over bothC3 andZ and the fibration ofF = C3 ×CP1 overZ has fibres

2 The use of primed (rather than unprimed) spinors in this section originates from the representation of EW spaces
as reductions of ASD (rather than SD) metrics in four dimensions. ASD structures (for which the covariantly
constant self-dual spinors are conventionally denoted as having primed indices) are taken as basic because they
arise from a natural choice of orientation and conformal structure on a Kähler manifold.
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spanned by the distributionLA′ = πB
′
∂A′B ′ , where∂A′B ′xC

′D′ = 1/2(εC
′

A′ εD
′

B ′ + εC
′

B ′εD
′

A′ ).

In the affine coordinatesπA
′ = (1,−λ̃), this distribution is

L0′ = ∂t − λ̃∂y, L1′ = ∂y − λ̃∂x

(we have ignored the constant factorπ1′ ). Note that thisLA′ is the special caseu(x, y, t) = 0
of the Lax pair (2.10) for the dKP equation.

We also define the correspondence spaceFW = R2+1 × CP1 for R2+1. LetZR be the
sub-manifold ofZ preserved by the conjugation

(ω, π0′ , π1′) → (ω, π0′ , π1′),

and letlp be the real line inZR that corresponds top ∈ W and letZ ∈ lp. The totally
real correspondence space is a four-dimensional real manifold defined byF4

R
:= ZR ×

R
2+1|Z∈lp and can be represented as the setλ̃ = ¯̃

λ orπA′ = π̄A′ . The distributionLA′ ∩LA′

is one-dimensional, spanned byπA
′
πB

′
∂A′B ′ , on the complement ofF4

R
. OnF4

R
,LA′ ∩LA′

is two-dimensional real, as hereLA′ = L̄A′ . The real correspondence spaceFR divides
FW = R2+1 × CP1 into two halves.

4.2. The Lax formulation and twistor correspondence

Proposition 4.1. LetV1, V2, V3 be three independent holomorphic vector fields on a three-
dimensional complex manifoldW such that

L0′ = V1 − λ̃V2 + f0′∂λ̃, L1′ = V2 − λ̃V3 + f1′∂λ̃ (4.44)

is an integrable distribution for some functionsf0′ , f1′ , which are third-order polynomials
in λ̃ ∈ CP1. Then there exists a one-formν such that the contravariant metricV2 ⊗ V2 −
1/2(V1 ⊗ V3 + V3 ⊗ V1) andν give an EW structure onW. Each EW structure arises in
this way.

Remarks.
• The Lax pair(2.10)for the dKP equation is of course a special case of(4.44).
• The Lax formulations are widely applicable in the theory of integrable systems and so

the above proposition can be applied outside twistor theory. It is, however, much easier
to prove Proposition4.1using the twistor geometry, rather than an explicit calculation.
This justifies adopting the spinor notation

∇A′B ′ =
(
V1 V2

V2 V3

)
, fA′ = (f0′ , f1′), πA

′ = (1,−λ̃),

in which the Lax pair has the compact formLA′ = πB
′∇A′B ′ + fA′∂λ̃. We shall use this

notation in the proof of Proposition4.1.
• The third order polynomialsfA′ contain eight functions not depending onλ̃. These can

be reduced to four functions by choice of a suitable spin frame for whichfA′ become
linear in λ̃. In this frame, there exists a vector formula forν in terms ofΓijk , andfA′ .
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• Proposition4.1 holds for complex solutions and for any choice of signature for real
space–time.

Proof of Proposition 4.1. Assume thath = V2⊗V2−1/2(V1⊗V3+V3⊗V1) andν gives
an EW structure. LetV (λ̃) = V1 −2λ̃V2 + λ̃2V3. Theng(V (λ̃), V (λ̃)) = 0 for all λ̃ ∈ CP1

soV (λ̃) determines a sphere of null vectors. Choosel0′ = V1 − λ̃V2, l1′ = V2 − λ̃V3 as a
basis of the orthogonal complement ofV (λ̃). For each̃λ ∈ CP1, the vectorsl0′ , l1′ give a
null two-surface. It is well known [4,15,25] that the EW equations on(h, ν) are equivalent
to the integrability conditions of null, totally geodesic surfaces. Therefore, the Frobenius
theorem implies that the horizontal lifts

L0′ = V1 − λ̃V2 + f0′∂λ̃, L1′ = V2 − λ̃V3 + f1′∂λ̃

of l0′ , l1′ to T (W × CP1) span an integrable distribution. The functionsf0′ andf1′ are
third order inλ̃, because the Möbius transformations ofCP1 are generated by vector fields
quadratic inλ̃, andl0′ , l1′ are linear inλ̃.

The above argument can be made more explicit in spinor notation: letLA′ be the horizontal
lift of lA′ = πB

′∇A′B ′ to the weighted spin bundle (i.e.LA′πC′ = 0). This yields

LA′ = πB
′∇A′B ′ + ΓA′B ′C′D′πB

′
πD

′ ∂

∂πC′

+1

2
νB ′D′πB

′
(
πD

′ ∂

∂πA
′ − 1

2
πA′

∂

∂πD′
− εD

′
A′ π · ∂

∂π

)
, (4.45)

whereΓA′B ′C′D′ is spinor Levi-Civita connection defined by∇A′B ′πC′ = −ΓA′B ′C′D′πD
′
.

The integrability conditions imply [LA′ , LB ′ ] = 0(modLA′). The distributionLA′ , when
projected toFW is given by (4.44), where

fA′ = ΓA′B ′C′D′πB
′
πC

′
πD

′ + 1
4πA′νB ′C′πB

′
πC

′
. �

The twistor spaceZ for a solution to the EW equations on(W, h, ν) associated to the
Lax system onLA′ as above is obtained by factoring the spin bundleW × CP1 by the
twistor distribution (Lax pair)LA′ . This clearly has a projectionq : W × CP1 7→ Z and
we have a double fibration

W × CP1

r ↙ ↘ q

W Z

Each pointp ∈ W determines a spherelp made up of all the null totally geodesic
two-surfaces throughp. The normal bundle oflp in Z is N = TZ|lp /Tlp. This is a rank
one vector bundle overCP1, therefore it has to be one of the standard line bundlesO(n).

Lemma 4.2. The holomorphic curveslp := q(CP1
p), whereCP1

p = r−1(p), p ∈W have
normal bundleN = O(2).
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Proof. To see this, note thatN can be identified with the quotientr∗(TpW)/{spanL0′ , L1′ }.
In their homogeneous form, the operatorsLA′ have weight 1, so the distribution spanned
by them is isomorphic to the bundleC2 ⊗O(−1). The definition of the normal bundle as
a quotient gives a sequence of sheaves overCP

1.

0 → C
2 ⊗O(−1) → C

3 → N → 0

and we see thatN = O(2), because the last map, in the spinor notation, is given explicitly
by V A

′B ′ 7→ V A
′B ′
πA′πB ′ clearly projecting ontoO(2). �

A generalisation of the flat mini-twistor correspondence to the 2+1 EW spaces is given
by the following proposition.

Proposition 4.3([15]). Any solution to the EW equations(1.5) is equivalent to a complex
surfaceZ with a family of rational curves with normal bundleO(2).

Points ofW correspond to curves inZ with self-intersection number 2. The Kodaira
theorem [18] applied to deformations preserving the real structure ofZ guarantees the
existence of a three-dimensional complex family of such curves. Points ofZ correspond to
totally geodesic hyper-surfaces inW. Non-null geodesics inW consist of all the curves inZ
which intersect at two fixed points inZ. Null geodesics correspond to curves passing through
one point with a given tangent direction. Thus the projective and conformal structures can
be reconstructed.

4.3. Mini-twistor spaces from twistor spaces

Proposition 4.4. All EW spaces arise as symmetry reductions of hyper-Hermitian metrics
(or indefinite hyper-Hermitian metrics) in four dimensions.

Proof. Consider an EW structure with the corresponding Lax pair (4.44). Choose a spin
frame in whichfA′ is linear inλ̃; fA′ = UA′ + λ̃WA′ (this is always possible by making a
suitable Möbius transformation ofCP1 and choosing an appropriate conformal scale), and
introduce a new spectral parameterλ := λ̃− z for somez. Nothing in theLA′ depends on
z so we can replace∂λ̃ by ∂z. This yields (with a dropped prime)

LA = ∇A0′ − λ∇A1′ ,

where

∇00′ = ∇0′0′ + z∇0′1′ + (U0′ + zW0′)∂z, ∇10′ = ∇1′0′ + z∇1′1′ + (U1′ + zW1′)∂z,

∇01′ = ∇0′1′ +W0′∂z, ∇11′ = ∇1′1′ +W1′∂z,

whereU0′ , U1′ ,W0′ ,W1′ are four functions not depending onλ. One is left with a Lax pair
for a hyper-Hermitian four manifold becauseLA can be made to commute exactly (as in



82 M. Dunajski et al. / Journal of Geometry and Physics 37 (2001) 63–93

Proposition 2.6) by choosing two solutions to the background coupled neutrino equation
(see [6] for details). This Lax pair has an obvious symmetry∂z. �

Remark. All EW spaces arise as symmetry reductions of a pair of coupled PDEs[6,13]
associated to hyper-Hermitian four manifolds. In [2], Proposition4.44was proven using
different methods for EW spaces of Riemannian signature.

The twistor construction of Hitchin can be viewed as a reduction of Penrose’s nonlinear
graviton construction. It follows from [16] (compare Proposition 2.5) that the mini-twistor
spaceZ corresponding toW is a factor spacePT/K, wherePT is the twistor space of
(M, g) andK is a holomorphic vector field onPT corresponding to a conformal Killing
vectorK.

We shall state below the Penrose result extended to the Einstein and hyper-Hermitian
cases.

Proposition 4.5. LetPT be a three-dimensional complex manifold with a four-dimensional
family of rational curves(invariant under a complex conjugation with fixed points) with
normal bundleO(1) ⊕ O(1). Then the moduli spaceM of these sections is equipped
with an ASD conformal structure[g] of signature(+ + −−). Conversely, given an ASD
four-manifold, there will always exist a corresponding twistor space. MoreoverM is
• hyper-Kähler, iff there exists a projectionµ : PT → CP

1, and each fibre of this pro-
jection is equipped with anµ∗O(2) valued symplectic form[23] (equivalently, we can
require that the canonical bundleκ ofPT is κ = µ∗O(−4));

• hyper-Hermitian, iff there is a projectionµ : PT → CP
1 [6];

• Einstein(Rab = Λgab), iff there exists a contact structureτ ∈ Λ2(T ∗PT )⊗O(2), where
nowO(2) = κ−1/2, andκ is the canonical bundleΩ3, such thatτ ∧ dτ = Λξ , where
ξ ∈ Ω3 ⊗ κ−1 [30].

4.3.1. Construction of the two-form
Consider an ASD four-manifold(M, [g]). Define the non-projective twistor space,T ,

to be the total space of the line bundleκ1/4 → PT , whereκ = Ω3 is the canonical bundle.
In the conformally flat case,T is the tautological line bundleO(−1), i.e.C4 7→ CP

3, and
we will also use this notation,T = O(−1) in the curved case. The non-projective spin
bundleSA′ 7→M is defined to be the total space of the pull back of this line bundle to the
correspondence spaceF =M×CP1. Clearly,SA′ =M×C2. The fibrationq : SA

′ 7→ T
is spanned by a lift of the twistor distribution or Lax pair. The non-projective spin bundle
is the total space of a line bundle, which we will also denote byO(−1), overF . (Note
that in the hyper-Hermitian case, the line bundlesO(n) just defined willnotbe the same as
µ∗O(n) unless(M, [g]) is in fact hyper-Kähler.)

The spaceT admits an Euler vector fieldΥ being the total space of a line bundle, and a
tautological three-form,ξ the pull back of the tautological three-form onκ. These satisfy
LΥ ξ = 4ξ . Let φ = dξ , thenξ = 4φ(Υ, . . . , . . . ). ξ can be thought of as a form onPT
with values in the dual canonical bundleκ∗.
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We now impose a symmetry: letK, K̃, andK be a conformal Killing vector onM, its
lift to the correspondence spaceM × CP1, and the holomorphic vector field onT which
is the push-forward of̃K, respectively.

Proposition 4.6. The two-formΣ̃ := q∗φ(K, Υ, . . . , . . . ) ∈ Λ2(T ∗SA′
) satisfies

Σ̃ ∧ Σ̃ = 0, dΣ̃ = β ∧ Σ̃, L
K̃
Σ̃ = 0 (4.46)

for some one-formβ homogeneous of degree0 in πA
′
.

Proof. It follows from the definition ofΣ̃ that the integrable twistor distribution belongs
to the kernel ofΣ̃ . Therefore, Eqs. (4.46) follow from Frobenius’ theorem. The one-form
β is defined up to the addition of d(ln σ), whereσ is a twistor function homogeneous of
degree 0. �

FromLΥ Σ̃ = 4Σ̃ andΥ |Σ̃ = 0 it follows thatΣ̃ descends toF where it takes values
inO(4). Note, however, that d̃Σ does not descend asΥ |dΣ̃ = LΥ Σ̃ 6= 0. To differentiate
Σ̃ onF , we need a non-zero section ofO(4) in order to dehomogenisẽΣ . When(M, g) is
ASD Einstein or vacuum, we can find a section ofO(4) to dehomogenisẽΣ . This section
necessarily has zeroes, and so equivalently, this requires the existence of a divisor description
of the dual canonical bundle. This can be seen from the twistor construction.
• Vacuum case. The twistor space fibres overCP1 and so we can pull backπ · dπ toPT .

LetK be a holomorphic vector field onPT such thatLKΣλ = ηΣλ (K corresponds to
a homothetic Killing vector onM). The functionD := K |π · dπ is a section ofO(2)
and the two-formD−2K |ξ descends to the mini-twistor spaceZ.

• Einstein case. Let PT E be the projective twistor space corresponding to a solution of
the ASD Einstein equations. It is equipped with a contact structureτ ∈ Λ2(T ∗PT E)⊗
O(2) such thatτ ∧ dτ = Λξ . dτ defines a holomorphic symplectic structure on the
non-projective twistor spaceTE. If K is a Killing vector on an ASD Einstein manifold,
then the corresponding holomorphic vector field on the non-projective twistor space is
Hamiltonian with respect to dτ . To see this, define a section of O(2) byD := K |τ . We
have dD = LKτ −K |dτ = −K |dτ asK is a symmetry.

On the projective spin bundleF define

Π := D−2Σ̃.

We have the following result.

Proposition 4.7. The two-formΠ is well defined on the EW correspondence spaceFW. It
satisfies

dΠ = 0, Π ∧Π = 0, (4.47)

whered = dxi⊗∂i+dλ̃⊗∂λ̃ is the exterior derivative onFW. Any two linearly independent
vectorsLA′ such thatLA′ |Π = 0 form a Lax pair for the EW equations.
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Proof. The simplicity follows fromΣ̃ ∧ Σ̃ = 0. In the vacuum case, the two-form

Π = q∗ K |ξ

K |(π · dπ)
(4.48)

is a pull back of a closed and simple form onPT . In the Einstein case

Π = D−2q∗K |(Λτ ∧ dτ) = d

(
Λτ

D

)
.

Therefore, EW metrics which come from ASD Einstein and hyper-Kähler four manifolds
give rise to the same structure on the reduced spin bundle. The formΠ descends toFW

becauseK̃ |dΠ = 0 and d(K̃ |Π) = 0. �

Remark. In [28], certain dispersionless integrable systems were expressed in terms ofΠ

satisfying(4.47).

The two-formΣ̃ can be equivalently constructed from the data onM as follows. LetK
be a Killing vector on a general ASD conformal manifold(M, [g]), and letΞ be a volume
form on the non-projective primed spin bundleSA

′
. Define the two-form onSA

′

Σ̃ := Ξ(L0, L1, K̃, ΥΞ , . . . , . . . ). (4.49)

HereΥΞ = πA
′
/∂πA

′
is the Euler vector field onSA

′
,LA is the twistor distribution, and̃K

is a Lie lift ofK toSA
′
. Now assume that(M, g) is also vacuum. Consequently,∇AA′KA

B ′ =
const. and the spin bundle is equipped with a canonical divisor3 D := πA

′
πB

′∇AA′KA
B ′ ∈

O(2) which descends to the reduced spin bundle4 (Fig. 1). It is easy to prove that now

Σ̃ = πA′πB ′πC′πD′φA
′B ′
ΣC′D′ + πA′πB ′πC′ dπC

′ ∧ (K |ΣA′B ′
),

β = 4φA′B ′πA
′
dπB

′

πA′πB ′φA′B ′ = d lnD2, Π = dλ ∧ K |Σ(λ)

D2
− Σ(λ)

D
,

whereΣ(λ) = πA′πB ′ΣA′B ′
. (4.50)

From the last formula, it follows that to constructΠ , one should rewriteΣ(λ)/D in the
coordinates in whichK = ∂t , and then replace all dt ’s by the differentials of a suitably
defined invariant spectral parameter.

Example. We shall now illustrate the construction ofΠ with a simple example. Let
2 dw dw̃ − 2 dz dz̃ be a flat metric onR2,2 and letK = z∂z − z̃∂z̃ be a Killing vector.
The flat twistor distribution and the lifted symmetry are

L0 = ∂w̃ − λ∂z, L1 = ∂z̃ − λ∂w, K̃ = z∂z − z̃∂z̃ + λ∂λ.

3 We assume that∇AA′KA
B ′ 6= 0. If ∇AA′KA

B ′ = 0, thenK is tri-holomorphic and a section ofO(2)which descends
to the reduced spin bundle is(ι · π)2 whereιA′ is any constant spinor.

4 By the reduced spin bundle (correspondence space), we mean the space of orbits ofK̃ in SA
′
(in F ).
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Fig. 1. Divisor on a mini-twistor space.

The volume form onF and the two-formΣ(λ) are given by

Ξ = dλ ∧ dz ∧ dz̃ ∧ dw ∧ dw̃,

Σ(λ) = −λ2dw̃ ∧ dz̃+ λ(dw ∧ dw̃ − dz ∧ dz̃)+ dw ∧ dz.

In the covariantly constant frame, we introduce 2r := ln(zz̃), 2φ := ln(z/z̃), so that
K̃ = ∂φ + λ∂λ. In these coordinates

Σ(λ) = −λ2 er−φdw̃ ∧ (dr − dφ)+ λ(dw ∧ dw̃

+2 e2r dr ∧ dφ)+ er+φ dw ∧ (dr + dφ)

and (from (4.50))

Π = er (dw̃ ∧ dλ̃+ λ̃−2 dw ∧ dλ̃

+λ̃dw̃ ∧ dr − λ̃−1dw ∧ dr)+ 2λ̃−1 e2r dr ∧ dλ̃− dw ∧ dw̃, (4.51)

whereλ̃ = λe−φ is an invariant spectral parameter.
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The two-formΠ can also be obtained as a pull back fromPT . Local inhomogeneous
coordinates onPT pulled back toF are given by(λ, µ1 = λw̃ + z, µ0 = λz̃ + w). The
holomorphic vector field onPT isK = µ0∂µ0 + λ∂λ. From (4.48), we have

q∗K |(dλ ∧ dµ0 ∧ dµ1) = (µ0 dλ− λdµ1) ∧ dµ1 = λ2 dµ1 ∧ d

(
µ0

λ

)
.

Thus

Π = dµ1 ∧ d

(
µ0

λ

)
= dP ∧ dQ

which agrees with (4.51). Here,P = w̃ + λ̃−1 er andQ = λ̃er + w are coordinates on
mini-twistor space pulled back to the reduced spin bundle.

5. Twistor theory of the dKP EW structures

Here, we give an account of the twistor theory of the dKP EW metrics, and the dKP
equation (some connections between a twistor theory and the dKP equations have been
discussed in [14]). We shall also characterise all four-dimensional hyper-Kähler and ASD
Einstein metrics that give rise to the dKP EW structures.

Define the non-projective twistor space,Y corresponding to a Weyl spaceW, to be the
total space of the line bundleκ1/4 → Z, whereκ = Ω2 is the canonical bundle ofZ.
The non-projective spin bundleSA′ 7→ W is the rank two vector bundle defined to be the
total space of the pull back of this line bundle to the correspondence spaceW ×CP1. The
fibrationq : SA

′ 7→ Y is spanned by a lift of the mini-twistor distributionLA′ (4.44).
Any shear-free null geodesic congruence of the EW structure determines a one-dimen-

sional sub-manifold inZ (this is a reduction of the four-dimensional Kerr theorem). A
codimension-one sub-manifold determines a line bundle [D] by the divisor construction;
[D] admits a sectionD that vanishes precisely on the given sub-manifold.

When the EW geometry arises from a solution of the dKP equation, the dual canonical
bundleκ−1 of the mini-twistor space admits a fourth root that is given by the divisor con-
struction, that admits a sectionD that vanishes on a codimension-one subset. In general,
as seen above, if the EW geometry is a reduction of an ASD Einstein, or hyper-Kähler
four-manifold, thenκ−1/2 admits a section whose zero set will generally have two compo-
nents in the neighbourhood of a line. For an EW dKP solution, the two ‘divisor curves’ in
Fig. 1 degenerate to one curve. This observation gives rise to a twistor characterisation of
solutions to the dKP equation.

Proposition 5.1. There is a one-to-one correspondence between EW spaces obtained from
solutions to the dKP equation and two-dimensional complex manifolds with
• a three parameter family of rational curves with normal bundleO(2);
• a global sectionl of κ−1/4, whereκ is the canonical bundle.
In order to obtain a real EW structure, we require an antiholomorphic involution fixing a real
slice, leaving a rational curve invariant and leaving the section ofκ−1/4 above invariant.
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Proof. The global sectionl of κ−1/4, when pulled back toSA′ determines a homogeneity
degree one function on each fibre ofSA′ and so must, by globality, be given byl = ιA

′
πA′

and sincel is pulled back from twistor space, it must satisfyLA′ l = 0. This implies
D̃A′(B ′ ιC′) = 0, and (after some algebraic manipulations)

D̃A′B ′ ιC
′ = 0,

whereD̃ is a covariant weighted derivative.
Therefore, the null vector fieldla = ιA

′
ιB

′
is covariantly constant. Lemma 2.3 im-

plies that the conformal weight ofιA
′

is −1
4 and hence that ofla is −1

2. This weight

can be deduced from the correspondence as follows: the two-formΣ̃ = πA′πB ′eA
′B ′ ∧

εC
′D′
πC′ dπD′ has conformal weight 0 onSA

′
. eA

′B ′
has weight 0, andεA

′B ′
weight−1

soπA′ has weight14. The global sectionπA′ ιA
′

is weightless so the weight ofιA
′

is −1
4.

Hence by Proposition 2.2, the corresponding EW space arises from a solution to the dKP
equation.

Conversely, given a solution of (2.9), one can obtainZ as a factor space ofW × CP1

by the distribution (2.10) and the covariant constant weighted null vectorla = ιA
′
ιB

′
gives

rise to the sectionl = ιA
′
πA′ of κ−1/4. �

Remark. Note that there is no one-to-one correspondence between such twistor spaces
and solutions to the dKP equation on account of the coordinate freedom(2.20) and (2.21).
The coordinate choices implicit in a solution to the dKP equation can be encoded on the
twistor space in the choice of the coordinates near the divisor as follows.

Let P̂ , Q̂ be local coordinates on a neighbourhood of the divisor inZ such thatQ̂ = 0
on the divisor and, settingQ = Q̂−1, P = P̂ /Q̂2 on the complement of the divisor, we
have

Π = dP ∧ dQ = −Q̂−4 dP̂ ∧ dQ̂.

Consider a graph of a rational curvêP(Q̂). Parameterise the curve by(t, y, x) as follows:

t := P̂ |
Q̂=0, y := dP̂

dQ̂

∣∣∣∣∣
Q̂=0

, x := 1

2

d2P̂

dQ̂2

∣∣∣∣∣
Q̂=0

.

Therefore, the local coordinatesP,Q have the following expansion nearλ̃ = ∞

Q := λ̃+
∞∑
i=1

uiλ̃
−i , P =

∞∑
i=1

wiQ
−i + x + Qy+Q2t

(after performing an SL(2,C) transformation and choosing a spin frame such that the
constant term in the Laurent expansion ofQ vanishes). When we pull the mini-twistor
coordinates back toF , thenui, wi become functions of(x, y, t). The functionsP andQ
are solutions of Lax equationsLA′P = LA′Q = 0. They form a local Darboux atlas as
Π = dP ∧ dQ, whereΠ is given by(2.8):

Π = dx ∧ dλ̃+ dy ∧ d(1
2λ̃

2 + u1)+ dt ∧ d(1
3λ̃

3 + λ̃u1 + w1).
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The poles ofΠ occur on the divisor. NowΠ is a pull back of a two-form from a two-dimen-
sional manifold. Therefore, it satisfiesΠ ∧Π = 0, which yieldsw1x = u1y and the dKP
equation(2.9) for u1.

Thus, a solution to the dKP equation corresponds to a EW mini-twistor space as de-
scribed in Proposition5.1together with a Darboux coordinate system as above on the third
formal neighbourhood of the divisor. (It seems likely that the Benney hierarchy will sim-
ilarly correspond to the EW dKP mini-twistor space as above together with the Darboux
coordinate system on a neighbourhood of the divisor defined now to all orders.)

Now we are in a position to give a characterisation of the hyper-Kähler metrics (2.27).

Proposition 5.2. Letg be an indefinite hyper-Kähler metric with a symmetryK satisfying
dK+ ∧ dK+ = 0. Theng is locally of the form(2.27).

Proof. Let K be a vector field (corresponding toK) on a twistor space of(M, g). The
divisor

K |π · dπ = πA′πB ′φA
′B ′

descends to the mini-twistor space. If dK+ is null, thenφA′B ′ = 1
2∇AA′KA

B ′ = ιA′ ιB ′ for

some constant spinorιA
′
. Therefore,π · ι onPT defines a divisor inZ. It takes values in

κ−1/4 because the canonical bundle ofPT is the square of the pull back of the canonical
bundle ofCP1. The assumptions of Proposition 5.1 are satisfied and so the EW structure
corresponding toZ is of the form (2.11). Therefore, it follows from Proposition 2.5 that
the metricg is given by

g = Ω(Ṽ (dỹ2 − 4 dx̃ dt̃ − 4ũdt̃2)− Ṽ −1(dz̃+ α̃)2) = Ωg̃,

whereũ(x̃, ỹ, t̃ ) a solution to dKP,(Ṽ , α̃) a solution to the monopole equation (2.23), and
Ω is a conformal factor. Calculating the scalar curvature of the metricg̃ yields

R̃ = 8(Ṽỹỹ − Ṽx̃t̃ + (ũṼ )x̃x̃ )Ṽ ,

and soR̃ = 0 becausẽV satisfies (2.26). However, the metricg is hyper-Kähler, therefore
its scalar curvature also vanishes. As a consequence, we deduce thatΩ = Ω(t̃). Now we
can use the coordinate freedom (2.21) to absorbΩ in the solution to the dKP equation. This
yields

g = V (dy2 − 4 dx dt − 4udt2)− V −1(dz+ α)2, (5.52)

where(V , α) is another solution to the monopole equation. In Section 2.1, we showed that
this metric is a hyper-Kähler metric ifV is a multiple ofux .

Consider the metric (5.52) with an arbitrary monopoleV (an arbitrary solution to the
linearised dKP equation (2.26)). The self-dual derivative of the isometryK = ∂z is given
byφA′B ′ = (ux/V )ιA′ ιB ′ for some constant spinorιA′ . The well-known identity∇a∇bKc =
RbcadK

d and the vacuum condition yield∇aφB ′C′ = 0. Therefore, (5.52) is hyper-Kähler
iff ux/V = const. �
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Remarks.
• This proposition corrects an omission made in the classification[8] of complexified

hyper-Kähler spaces with symmetry. In Appendix A, we shall demonstrate explicitly that
the dKP equation is a reduction of the second heavenly equation considered in[8].

• Metrics(5.52)withV 6= const. ux are not vacuum, but they admit a covariantly constant
real spinor. The full characterisation of these metrics will be given in our subsequent
paper.

Proposition 5.3. All EW structures which arise from indefinite ASD Einstein metric with
a symmetryK satisfyingdK+ ∧ dK+ = 0 are locally of the form(2.11).

Proof. The canonical divisorD := K |τ , (whereτ is the contact structure) descends to a
mini-twistor space. Since dK+ is null,

√
D exists and takes its values inκ−1/4. �

6. Symmetry reductions of hyper-Kähler metrics in2 + 22 + 22 + 2 signature

Symmetry reductions of the hyper-Kähler condition on a real four-dimensional Rieman-
nian metric have been completely classified:
• If the symmetry is tri-holomorphic, then the corresponding metric belongs to the Gibbons–

Hawking class [10], and is given by a solution to the Laplace equation in three dimensions.
The resulting EW structures are trivial, and their mini-twistor space isTCP1.

• Hyper-Kähler metrics with non-tri-holomorphic Killing vectors are given by solutions
to the SU(∞) Toda equation [8]. The corresponding EW structures [32] are charac-
terised by the existence of a shear-free, twist-free geodesic congruence [29]. Mini-twistor
spaces are in this case equipped with a canonical divisor (two one-dimensional complex
sub-manifolds) taking its values inO(2) [19].

• Hyper-Kähler metrics with tri-holomorphic conformal symmetries yield a class of EW
structures (called hyper-CR EW structures) characterised by the existence of a sphere
of shear-free, divergence-free geodesic congruences [9]. The corresponding mini-twistor
spaces are fibred overCP1.

• Hyper-Kähler metrics with non-tri-holomorphic, conformal symmetry (and the resulting
EW structures) are given by solutions to a certain second order integrable equation in three
dimensions [7]. This equation givesSU(∞)-Toda and hyper-CR EW structures as limiting
cases. The EW structures arising from conformal, non-tri-holomorphic reductions are
characterised by the existence of a shear-free geodesic congruence for which the twist is
a constant multiple of the divergence [2].

The above list is not complete if one considers hyper-Kähler metrics in(++−−) signature.
The existence of null structures of various kinds allows two additional types of symmetries:
• Hyper-Kähler metrics for which the self-dual part of a derivative of a Killing vector is

null correspond to solutions of the dKP equation (2.9). The corresponding EW structures
are characterised by the existence of a constant-weighted vector. The mini-twistor spaces
are such that the line bundleκ−1/4 admits a section, whereκ is the canonical line bundle.
The above statements have been proved in this paper.



90 M. Dunajski et al. / Journal of Geometry and Physics 37 (2001) 63–93

• Hyper-Kähler metrics with conformal Killing vectors for which the self-dual part of a
derivative of a conformal Killing vector is null.

The last possibility has not yet been investigated. The EW spaces will be given by a gener-
alisation of the dKP equation. We intend to study this generalisation, and the corresponding
EW geometries in a subsequent paper.

7. Outlook: a twistor theory for the full KP equation?

A combination of the dispersive limit of dKP with the twistor picture suggests a candidate
for a twistor space for the full KP equation (2.6) (cf. the similar proposal in [27]).

Let x be a coordinate on a configuration spaceQ, and let λ̃ be the corresponding
momentum. The extended six-dimensional phase-spaceT ∗(Q × R2) is coordinatised by
xi = (x, y, t), pi = (λ̃, H2, H3). Restrict the symplectic formΠ on T ∗(Q × R2) to the
four-dimensional correspondence spaceF4 obtained by puttingHr := Hr(x

i, λ̃), r = 2,3.
The (complexified) spaceF4 is foliated by sub-manifolds whose tangent vectors annihilate
the symplectic form, which gives rise to a projectionp : F → Z such thatΠ descends to a
symplectic form onZ. The two-dimensional complex manifoldZ is the mini-twistor space
for the extended configuration spaceQ×R2 with its dKP EW structure. It is believed that
the Moyal quantisation ofT ∗(Q×R2) gives rise to the full KP equation. This suggests the
conjecture that there exists a correspondence between solutions to the full KP equation and
the Moyal deformations ofZ.

It will be instructive to compare this approach to the twistor constructions for the full KP
equations described in [20], and Section 12.6 of [22].
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Appendix A

Here, we shall demonstrate (by an explicit calculation) that the dKP equation (2.9)
is a reduction of the second heavenly equation by a Killing vector with a null self-dual
derivative.



M. Dunajski et al. / Journal of Geometry and Physics 37 (2001) 63–93 91

LetΘ(z, t, q, y) satisfy [26]:

Θzy +Θtq +ΘqqΘyy −Θ2
qy = 0. (A.1)

Then

g = 2(dz dy + dq dt −Θqq dz2 −Θyy dt2 + 2Θyq dz dt) (A.2)

is a hyper-Kähler metric. All hyper-Kähler metrics can locally be put in the form (A.2).
LetK be a Killing vector such that dK+ ∧ dK+ = 0. There is no loss of generality [8]

in choosingK = ∂z − 2z∂q , in which case dK+ = 2 dt ∧ dz.
The Killing equations yield(LKΘ)yy = (LKΘ)qq = 0, (LKΘ)yq = 1. They integrate to

Θ = zqy+ yA(z, t)+ qB(z, t)+ C(z, t)+G(y, t, q + z2). (A.3)

The functionC is pure gauge and can be set to zero without loss of generality. Imposing
(A.1) gives two equations: the first isAz + Bt = 2z2, and we can deduce, without loss of
generality, thatA = z3, B = −z2t , and the second is

−u−Gtu +GyyGuu −G2
yu = 0, where u = −(q + z2). (A.4)

The previous equation is equivalent to the dKP equation. To see this we write (A.4) as a
closed system

dG = Gu du+Gt dt +Gy dy,

0 = −udy ∧ dt ∧ du+ dGu ∧ dy ∧ du− dGy ∧ dGu ∧ dt. (A.5)

Now rewrite the first equation as d(G − uGu) = Gt dt + Gy dy − udGu, and perform a
Legendre transform

x := Gu, u = u(t, y, x), H(t, y, x) := −G(t, y, u(t, y, x))+ xu(t, y, x).

The relation dH = Ht dt +Hx dx +Hy dy impliesHt = −Gt,Hy = −Gy,Hx = u. Eq.
(A.5) yields

−Hx dy ∧ dt ∧ dHx + dx ∧ dy ∧ dHx + dHy ∧ dx ∧ dt = 0

which is equivalent to

HxHxx −Hxt +Hyy = 0. (A.6)

Taking thex derivative of the above equation and usingHx = u yields

uxt − uuxx − u2
x = uyy

which is the dKP equation. To calculate the metric, differentiate the relationx = Gu with
respect tox andHy = −Gy with respect toy,

1 = Guuux, 0 = Guy +Guuuy, 0 = Gut +Guuut , Gyy = u2
y

ux
+ uux − ut
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(we also used (A.6)). Therefore (from (A.3)), we have

Θyy = u2
y

ux
+ uux − ut , Θyq = uy

ux
+ z, Θqq = 1

ux
.

The metric (A.2) in terms ofu(x, y, t) is

g = 2

(
−ux dx dt + dz dy + 2

uy

ux
dz dt − uy dy dt −

(
uux + u2

y

ux

)
dt2 − 1

ux
dz2

)

= ux

2
(dy2 − 4 dx dt − 4udt2)− 2

ux

(
dz− ux dy

2
− uy dt

)2

which is (2.27).
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